Structural nonlinear damage identification based on the information distance of GNPAX/GARCH model and its experimental study

Author:

Zuo Heng1,Guo Huiyong1ORCID

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing, P. R. China

Abstract

In the structural health monitoring (SHM) of civil engineering, most of the structural damage is nonlinear damage, such as breathing cracks and bolt looseness. Under the excitation of external loads, the time-domain response data of the structure produced by these nonlinear damages have nonlinear features. In order to solve the time-domain nonlinear damage identification problem of complex structures, this paper proposes a nonlinear damage identification method based on the information distance of GNPAX/GARCH (general expression of system identification for linear and nonlinear with polynomial approximation and exogenous inputs/generalized autoregressive conditional heteroskedasticity) model. First, an order determination method based on Bayesian optimization to select the order of the GNPAX/GARCH model was proposed, and the GNPAX/GARCH model was established for damage identification. Then, the redundant structural items of GNPAX/GARCH model were removed by the model optimization method based on the structural pruning algorithm. Finally, the information distance of the GNPAX/GARCH model conditional heteroscedasticity series between the baseline state and test state was derived, and the structural damage source locations were determined according to the information distance. A three-story frame structure experiment and a stand structure experiment were used to verify the effectiveness of the proposed method. The results show that the proposed method can effectively identify the nonlinear damages caused by the component breathing crack and joint bolt looseness, verifying its robustness to the nonlinear damage identification of the multi-story and multi-span complex structures.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3