An Analytical Solution on Vibration Reduction and Shear Force Mitigation of Cantilever Mindlin Plates Using Orthogonal Ribs
-
Published:2023-08-21
Issue:
Volume:
Page:
-
ISSN:0219-4554
-
Container-title:International Journal of Structural Stability and Dynamics
-
language:en
-
Short-container-title:Int. J. Str. Stab. Dyn.
Author:
Guo Hui1,
Zhang Kai2,
Lin Tian Ran1
Affiliation:
1. Center for Structure Acoustics and Machine Fault Diagnosis, Qingdao University of Technology, Qingdao 266520, P. R. China
2. Department of Mechanical and Electrical Engineering, Ocean University of China, Qingdao 266100, P. R. China
Abstract
Vibration of aircraft wings and the dynamic stress concentration at the clamped edge are important research topics due to concerns on the safety of aircrafts. To have a better understanding of the problem, the free and forced vibration response of a ribbed rectangular cantilever plate representing a section of an aircraft wing is investigated in this study. A new analytical solution is developed for the vibration analysis of rib stiffened cantilever plates using Mindlin plate and Timoshenko beam theories alongside the finite integral transform technique. The one- and two-dimensional integral transforms are applied to the governing equations of beams and plates, respectively, where the coupling force components at the interface between the base plate and the beam(s) can be automatically defined during the integral transform. Eventually, the partial differential equations are transformed into a system of linear algebraic equations in which its derivation is rigorous and easily implemented. Good agreements are found between the results of analytical solution, finite element analysis (FEA) and related literature. The solution is then employed to study the vibration suppression of cantilever plates and the shear force at the clamped edge. It is found that the insertion of a pair of orthogonal ribs in the plate can effectively reduce its vibration. An optimum orthogonal ribbing pattern is obtained using multi-objective particle swarm optimization (MOPSO) algorithm, taking into consideration both the vibration suppression of the plate and the maximum induced shear force at the corners of the clamped edge.
Funder
111 project from the Ministry of Science and Technology of China
Qingdao Postdoctoral Applied Research Program
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献