An Analytical Solution on Vibration Reduction and Shear Force Mitigation of Cantilever Mindlin Plates Using Orthogonal Ribs

Author:

Guo Hui1,Zhang Kai2,Lin Tian Ran1

Affiliation:

1. Center for Structure Acoustics and Machine Fault Diagnosis, Qingdao University of Technology, Qingdao 266520, P. R. China

2. Department of Mechanical and Electrical Engineering, Ocean University of China, Qingdao 266100, P. R. China

Abstract

Vibration of aircraft wings and the dynamic stress concentration at the clamped edge are important research topics due to concerns on the safety of aircrafts. To have a better understanding of the problem, the free and forced vibration response of a ribbed rectangular cantilever plate representing a section of an aircraft wing is investigated in this study. A new analytical solution is developed for the vibration analysis of rib stiffened cantilever plates using Mindlin plate and Timoshenko beam theories alongside the finite integral transform technique. The one- and two-dimensional integral transforms are applied to the governing equations of beams and plates, respectively, where the coupling force components at the interface between the base plate and the beam(s) can be automatically defined during the integral transform. Eventually, the partial differential equations are transformed into a system of linear algebraic equations in which its derivation is rigorous and easily implemented. Good agreements are found between the results of analytical solution, finite element analysis (FEA) and related literature. The solution is then employed to study the vibration suppression of cantilever plates and the shear force at the clamped edge. It is found that the insertion of a pair of orthogonal ribs in the plate can effectively reduce its vibration. An optimum orthogonal ribbing pattern is obtained using multi-objective particle swarm optimization (MOPSO) algorithm, taking into consideration both the vibration suppression of the plate and the maximum induced shear force at the corners of the clamped edge.

Funder

111 project from the Ministry of Science and Technology of China

Qingdao Postdoctoral Applied Research Program

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3