Vibration Analysis of a Plate Embedded or Attached with Acoustic Black Hole Using a Virtual Spring Energy Method

Author:

Wan Zhiwei12ORCID,Zhu Xiang123ORCID,Li Tianyun123,Guo Wenjie4,Dai Wei123

Affiliation:

1. School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

2. Hubei Key Laboratory of Naval Architecture and Ocean Engineering Hydrodynamics, Wuhan 430074, P. R. China

3. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, P. R. China

4. Engineering Research Center of Railway Environment, Vibration and Noise Ministry Education, East China Jiaotong University, Nanchang 330013, P. R. China

Abstract

Acoustic black hole (ABH) with the power-law profile has the advantages of strong designability and vibration suppression. This study provides a novel virtual spring energy method (VEM) to solve the vibration characteristics of a plate embedded or attached with acoustic black hole. Firstly, the virtual springs in this study can deal with boundary conditions, continuity conditions, and periodic conditions. After solving the kinetic and potential energy of a plate cell embedded with acoustic black hole, the periodic structure’s kinetic and potential energy need not be calculated repeatedly. The method is verified by the finite element method. Secondly, to overcome the stiffness reduction owing to the varying thickness of ABH in the primary bearing structure, a composite ABH structure called “Plate–ABH” is proposed, in which a damping layer is designed with an ABH profile and attached to the primary plate structure. The two layers connect each other through the virtual springs. The vibration characteristics of the composite ABH plate are given by employing the VEM. The composite ABH structure shows strong damping ability and lighter weight compared with a plate attached with the uniform thickness damping layer. Plate–ABH can be effectively used in the engineering of vibration reduction.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3