Time-Varying Transmissibility Analysis of Vehicle–Bridge Interaction Systems with Application to Bridge-Friendly Vehicles

Author:

Lin Ke1,Tan Chin An12,Ge Chengqiang23,Lu Huancai1

Affiliation:

1. Sound and Vibration Laboratory, Zhejiang University of Technology, Hangzhou 310014, P. R. China

2. Department of Mechanical Engineering, Wayne State University, Detroit, Michigan 48202, USA

3. College of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China

Abstract

It is well known that the natural frequencies of a coupled vehicle–bridge interaction system are time-varying. While this knowledge is useful for applications in bridge health monitoring, it does not provide an understanding of the relations between the excitation and coupled system responses, nor leads to developments of effective control strategies to mitigate vibration. In this paper, a novel theoretical framework for the time-varying displacement transmissibility is developed using a time-frozen technique. The time–frequency characteristics of the transmissibility functions are investigated to gain fundamental understanding and insights of the coupling dynamics in relation to the matching of bridge and vehicle natural frequencies. An important aspect of the transmissibility formulation is that it leads to the development of physics-based vibration control strategies in the frequency domain. By applying the principle of fixed points from vibration absorber designs to the transmissibility functions, an optimally tuned vehicle suspension to mitigate bridge vibration is obtained. The tuning strategy depends only on a priori known structural parameters. Thus, the tuning strategy provides useful guidelines in practice and is shown to be effective in reducing the vibrations of both the moving vehicle and the bridge. This work paves a foundation for further research in the design of bridge-friendly vehicles via parameter tuning.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3