A Novel Adaptive Square Root UKF with Forgetting Factor for the Time-Variant Parameter Identification

Author:

Zhang Yanzhe12ORCID,Ding Yong34ORCID,Bu Jianqing156ORCID,Guo Lina7ORCID

Affiliation:

1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

2. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

3. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China

4. Key Lab of Structures Dynamic Behavior and Control (Harbin Institute of Technology), Ministry of Education, Heilongjiang, Harbin 150090, China

5. School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

6. Key Laboratory of Traffic Safety and Control of Hebei Province, Hebei Province, Shijiazhuang, China

7. College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150048, China

Abstract

The unscented Kalman filter (UKF) serves as an efficient estimator widely utilized for the recursive identification of parameters. However, the UKF is not well suited for tracking time-variant parameters. Moreover, the unscented transformation (UT) used in the UKF typically relies on Cholesky decomposition to perform the square root operation of the covariance matrix. This method necessitates the matrix to maintain symmetry and positive definiteness. Due to the adverse influence of rounding error and noise, it becomes challenging to guarantee the positive definiteness of the matrix in each recursive step for practical engineering. The square root UKF (SRUKF) eliminates the need for the square root operation in the UT by directly updating the square root of the covariance matrix during each recursion. However, the SRUKF still relies on the rank 1 update to the Cholesky factorization to perform the recursive process, which also necessitates the matrix to be positive definite. Furthermore, the SRUKF is ineffective in the identification of time-variant parameters. Therefore, this paper proposes a modification to the SRUKF that ensures unconditional numerical stability by utilizing QR decomposition. Subsequently, the modified square root UKF (MSRUKF) method is enhanced by incorporating an adaptive forgetting factor that can be adjusted based on the residual information from each recursive step. This adaptation leads to the development of the adaptive SRUKF with forgetting factor (ASRUKF-FF) method, which significantly improves the tracking capability for time-variant parameters. To validate the effectiveness of the proposed method, this paper demonstrates its application in identifying the time-variant stiffness and damping parameters of a three-story frame structure. In addition, the method is employed to estimate the time-variant stiffness of the bridge excited by vehicles. The simulation results show that the proposed method has the superiority of high accuracy, strong robustness, and widespread applicability, even with incomplete measurements and inappropriate parameter settings.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3