A Low-Frequency Vibration Isolator with Cross-Ring Structure

Author:

Han Wenju1ORCID,Niu Muqing1ORCID,Cui Jianguo1ORCID,Lu Zeqi2ORCID,Chen Liqun1ORCID

Affiliation:

1. Department of Mechanics, School of Science, Harbin Institute of Technology, Shenzhen 518055, P. R. China

2. Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, P. R. China

Abstract

Low-frequency vibration isolation is essential for ultra-precision manufacturing and measurement equipment. Low stiffness is beneficial for low-frequency isolation, while leading to a degradation of the load capacity of the isolator. To tackle the problem, a nonlinear isolator is proposed with a cross-ring structure, composed of a circular ring and a semi-circular ring. Experimental studies validate that the isolator is applicable to different payload mass, and a cut-off frequency of 1.1[Formula: see text]Hz is achieved for an effective isolation. The isolator is theoretically investigated to reveal the mechanism leading to the low-frequency isolation performance. An elliptic integral method is adopted to characterize the stiffness characteristics of the ring structures under compression. The whole compression process of a semi-circular ring is divided into five stages according to the deformed shapes, exhibiting quasi-linear stiffness, stiffness-softening, negative stiffness, and stiffness-hardening characteristics in sequence. Together with the stiffness-softening circular ring, the cross-ring structure demonstrates a growing high-static-low-dynamic-stiffness (HSLDS) characteristic in a wide load range, and the result is verified by a restoring force measurement test. A harmonic balance analysis is performed to predict the frequency responses of the proposed isolator. It is shown that a low-frequency isolation can be achieved with the structure compressed to the HSLDS region by the payload, and an ultra-low-frequency isolation is achieved with the dynamic-to-static stiffness ratio below 0.1. A numerical investigation is performed to further reveal the frequency responses of the isolator with lightweight/overweight payloads and excessive excitation amplitudes. Jump phenomena are presented. This work provides a prototype and the theoretical basis for low-frequency vibration isolation via a cross-ring structure.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3