Active Control of Quasi-Zero-Stiffness Vibration Isolator with Variable Load

Author:

Sun Ke1,Tang Jie1ORCID,Yang Yukang1,Jiang Bolong2ORCID,Li Yinghui1,Cao Dengqing3ORCID

Affiliation:

1. School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China

2. Rail Transit Digital Construction and Measurement Technology, National Engineering Laboratory, China Railway Design Corporation, Tianjin 300308, P. R. China

3. School of Astronautics, Harbin Institute of Technology, Harbin 150001, P. R. China

Abstract

Quasi-zero-stiffness (QZS) isolator has great application potential in the field of low-frequency vibration isolation due to its high-static and low-dynamic (HSLD) nonlinear stiffness characteristic, but it is precisely this characteristic that makes it very sensitive to load changes. Once the load changes, causing it to deviate from the equilibrium position, it no longer qualifies zero-stiffness characteristic, and the vibration isolation capacity will be significantly decrease. To make the QZS isolator possess variable load capacity and be more suitable for engineering practice, an active QZS vibration isolator based on electromagnetic actuator is designed in this paper, which eliminates the influence of load changes through the active force of the electromagnetic actuator. First, the dynamic equation of the isolator is established by Newton–Euler method, and the dynamic characteristic of the isolator under standard load and load variations are analyzed through improved incremental harmonic balance (IHB) method based on discrete Fourier transform (DFT). Next, the improved particle swarm optimization (PSO) algorithm are employed to optimize the Proportion Integration Differentiation (PID) controller parameters. Then, the vibration isolation performance of QZS isolator in controlled and uncontrolled and linear systems in the same control state are compared in frequency domain and time domain, respectively. Finally, the performance of active QZS isolator under load variation is discussed. The results indicate that the isolation performance of the QZS isolator under active control is significantly better than in uncontrolled conditions and the controlled linear system. When the load changes, real-time compensation through the actuator output control force can also enable the QZS isolator to achieve a better vibration isolation performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

National Engineering Laboratory for Digital Construction and Evaluation Technology of Urban Rail Transit

Fundamental Research Funds for the Opening Project of Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3