Random Dynamic Analysis of Wind-Vehicle-Bridge System Based on ARMAX Surrogate Model and High-Order Differencing

Author:

Han Xu12,Xiang Huoyue13ORCID,Chen Xuli1,Zhu Jin13,Li Yongle13

Affiliation:

1. School of Civil Engineering, Southwest Jiaotong University, 610031 Chengdu, Sichuan, P. R. China

2. Chengdu Engineering Limited Liability Company of China Railway, No. 5 Engineering Group Co., Ltd. 610073 Chengdu, Sichuan, P. R. China

3. Wind Engineering Key Laboratory of Sichuan Province, 610031 Chengdu, Sichuan, P. R. China

Abstract

To investigate the stochastic characteristics of vehicle-bridge (VB) system under crosswind, an efficient method which combines AutoRegressive Moving Average with eXogenous inputs (ARMAX) model, high-order differencing (HOD) and important sample was proposed in this paper. First, the wind turbulence spectra relative to a moving vehicle and equivalent static gust load method were adopted to simplify the turbulent wind field of VB system, and a wind-vehicle-bridge (WVB) model was established and verified. Then, an analysis framework for WVB system based on ARMAX model was proposed, and HOD method and important sample were used to improve the prediction performance of the surrogate model. Prediction accuracy and calculation efficiency of proposed AMRAX model were verified and compared by Monte Carlo simulation (MCS). Finally, the impacts of vehicle speed and wind velocity on the stochastic characteristics of train response were discussed. Results indicate that the HOD method has significantly improved the prediction performance of ARMAX model for lateral response of trains, and the train responses predicted by ARMAX model based on HOD and important sample show perfect agreement with target results. Compared with MCS, the calculation efficiencies of proposed ARMAX model are improved by about two orders of magnitude. The extreme values of the train response with different vehicle speed and wind velocity gradually obey right skewness distribution, especially the lateral acceleration.

Funder

the National Key R&D Program of China

National Natural Science Foundation of China

Sichuan Science and Technology Program

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3