Abstract
AbstractIncreased train speeds have led to significant train-induced wind problems. This paper describes a numerical study of the aerodynamic loads produced when a train passes under a bridge and the bridge dynamic response based on a steel box-girder cable-stayed bridge. The results indicate that the wind pressure on the bottom plate and the maximum lift on the beam sections increase as the train speed increases or as the clearance under the bridge decreases. Changes in the intersection angle are found to have a greater impact on the 1/4-span and 3/4-span regions. The effects of the various influencing factors are basically the same in the construction and operation stages. As the train speed increases or the clearance under the bridge decreases, the bridge responses exhibit an upward trend. As the intersection angle decreases, the vibration displacement tends to increase, but the effects on the vibration acceleration and maximum counter-force of the temporary pier are not consistent. Compared with the construction stage, the dynamic responses of the main girder are smaller in the operation stage due to the larger overall rigidity and the support constraints. In the parameter ranges investigated in this study, the absolute values of maximum vertical bridge vibration displacement and acceleration decrease from 4 to 16 mm and from 85 to 400 mm/s2, respectively, in the construction stage to 1–5 mm and 42–174 mm/s2 in the operation stage. Moreover, the counter-force falling on the temporary pier after the main girder turns does not exceed the 2000-kN positive force or 300-kN negative force limits. In the operation stage, the bridge vibration responses will not affect the comfort of pedestrians.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献