Affiliation:
1. School of Civil Engineering, Chongqing University, Chongqing 400030, P. R. China
Abstract
This study proposes an approach to set up a continuum full bridge model with spatially inclined cables based on the Hamilton principle. The dynamic governing functions, considering the geometric non-linearities of cables and deck, represent simultaneously the vertical motion of deck and vertical–horizontal motion of cable. With the comparison of the modal properties obtained from the model to those from the accurate model, results show that the proposed model is capable of accurately simulating the modal properties. The primary resonance responses and corresponding frequency-response curves are obtained through the multiple-scale-method. A finite element (FE) model is established, and the corresponding non-linear dynamic analysis in time domain is conducted. Comparing the results from two models, it can be checked that the proposed model is reliable. According to the results of the proposed model, it is found that the second-order shape functions (SOSFs) play a significant role in the system response. Once the non-linear vibration of the bridge becomes significant only considering the excited mode with using the classical Galerkin decomposition cannot correctly predict the structure response. The SOSFs can be classified into stationary and vibrating components. The vibrating component can deviate the time-series of response from the harmonic wave, and the stationary component directly determines the mean value of the time-series.
Funder
National Natural Science Foundation of China
Chongqing University
Chongqing Natural Science Foundation
Ministry of Education and the Bureau of Foreign Experts of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献