Effects of Van Der Waals Forces on the Vibration of Stacked Multilayered Graphene/Black Phosphorus Heterostructures

Author:

Hou Dongchang1,Wang Lifeng1,Zhang Yiqing1

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, P. R. China

Abstract

In this paper, the vibration of a stacked multilayered graphene/black phosphorus (G/BP) heterostructure is investigated via the mesh-free method. The shape function and its derivatives are addressed by the moving least squares (MLS) approach. Optimization of the sequential quadratic programming method is adopted to calculate the distance between the arbitrary layers. Therefore, coefficients of the van der Waals (vdW) interaction between arbitrary layers of heterostructures are obtained. Then the frequencies and mode shapes of the multilayered G/BP heterostructure, considering the vdW interaction between arbitrary layers, are compared with considering only the vdW interaction among adjacent layers. The effects of the number of layers and aspect ratio of the G/BP heterostructure on the frequencies are investigated. The results demonstrate that coefficients of the vdW interaction, considering the arbitrary layers, are larger than those considering only adjacent layers. The difference between natural frequencies considering arbitrary layers and those considering adjacent layers is not clear for the low-order cases. Alternatively, the difference between natural frequencies obtained considering arbitrary layers and those considering adjacent layers are obvious for high-order cases. This paper provides a useful method to optimize the vdW interaction between multilayered G/BP heterostructures and can adequately simulate their vibration behaviors.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3