Interaction Dynamic Response of a High-Speed Train Moving Over Curved Bridges with Deficient or Surplus Superelevation

Author:

Shi Jin1,Ma Dengke1,Gao Ya1

Affiliation:

1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China

Abstract

This paper proposes a three-dimensional dynamic model for high-speed railway trains moving over curved bridges considering the transition curves, circular curves, and superelevation. Key features of this study are to consider the nonlinear geometrical relationships and creep relationships between the wheels and rail, for which the interactive iterative numerical algorithms are developed based on the equations of vertical displacement and rolling of wheelset, and the torsional resonance conditions of the vehicle–bridge system are verified. The results show that the torsional vibration will cause amplification on vertical dynamic response of the beam on the outside edge of the curve. The deficient/surplus superelevation plays an important role in the lateral and torsional angular displacements of the bridge, and the peak of the torsional resonance response can be reduced by adjusting the practical superelevation of the curve. The variations of wheel–load reduction rate and derailment coefficient in the curve section are positively correlated to the deficient/surplus superelevation. The curve radius is the key factor affecting the wear and fatigue of wheel–rail, and when the curve radius is greater than 7000 m, the wear and fatigue can be significantly reduced. Running at a deficient superelevation level can also reduce the wear and fatigue.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3