Affiliation:
1. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
Abstract
A steel portal frame subjected to an external blast is analyzed. The use of diagonal synthetic fiber ropes to brace the frame is studied. The force-elongation relationship of the ropes when in tension is modeled either as a bilinear function with initial slackness, or a power law based on tests. The effect of the ropes in reducing deflections and plastic strains is determined using the finite element software ABAQUS/Explicit. Inclusion of the influence of strain-rate on the material behavior of the frame is important. Several blast magnitudes and rope stiffness coefficients are considered. Snap loads occur in the ropes if the blast is sufficiently large. Deformations and strains may be reduced significantly by the ropes, and failure may be prevented.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献