BEHAVIOR OF STEEL PORTAL FRAMES IN FIRE: COMPARISON OF IMPLICIT AND EXPLICIT DYNAMIC FINITE ELEMENT METHODS

Author:

RAHMAN MAHBUBUR1,XU YIXIANG1,LIM JAMES B. P.2,SWITZER CHRISTINE1,HAMILTON ROBERT3,COMLEKCI TUGRUL3,PRITCHARD DAVID4

Affiliation:

1. Department of Civil Engineering, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, United Kingdom

2. SPACE, David Keir Building, Queen's University Belfast, Belfast BT9 5AG, United Kingdom

3. Department of Mechanical Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom

4. Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, United Kingdom

Abstract

The use of finite element methods to determine the collapse behavior of steel portal frames in fire requires temperature, large deformation, complex geometry, boundary conditions and degradation of material stiffness to be taken into account. For such analyses, the cost of computation is important as well as the accuracy, robustness and stability of the analyses. The implicit dynamic method is a rigorous technique that considers the equilibrium of every time step. However, convergence may become an issue, particularly if the frame undergoes structural instability while using a direct time incrementation scheme. In contrast, the explicit dynamic method does not require the equilibrium criteria to be met in every time step, and thus convergence problems are not encountered, although the cost of computation may be tremendous if the natural time scale is used. This paper presents a comparison between the efficiency, stability and accuracy of computations using the implicit and explicit dynamic methods, in determining the collapse behavior of portal frames at elevated temperatures; the models are quasi-static since inertia forces are ignored. It is found that similar results can be obtained using both the implicit and explicit dynamic methods, although the analysis times differ significantly. It is shown that, if the applied artificial inertia forces, in terms of residual forces, are magnified and an automatic time incrementation scheme is activated in the implicit dynamic method, then this method shows significant superiority over the explicit dynamic method both in terms of the cost of computation and the accuracy of results obtained for such structures.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3