Nonlinear Connection Stiffness Identification of Heritage Timber Buildings Using a Temperature-Driven Multi-Model Approach

Author:

Yang Qingshan1,Lyu Mengning2,Zhu Xinqun3

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing, P. R. China

2. Beijing’s Key Laboratory of Structural Wind, Engineering and Urban Wind Environment, School of Civil Engineering, Beijing Jiaotong University, Beijing, P. R. China

3. School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia

Abstract

‘Que-Ti’ is an important component in typical Tibetan heritage timber buildings and it performs similar to corbel brackets connecting beam and column in modern structures. It transfers shear, compression and bending moment by slippage and deformation of components as well as limited joint rotation. A rigorous analytical model of ‘Que-Ti’ is needed for predicting the behavior of a timber structure under extreme loadings. Few researches have been done on this topic, particularly with the parameters describing the performances of this connection subjected to external loads. In this paper, a new temperature-driven multimodel approach is proposed to identify the stiffness parameters of a ‘Que-Ti’ connection in its operating environment. Models with nonlinear compression and rotational springs have been developed to take into account the change of mechanical behavior of the ‘Que-Ti’ affected by the temperature variation in typical heritage Tibetan buildings. The column–beam connection is modeled as two nonlinear rotational springs and one nonlinear compressive spring. Ambient temperature variation is treated as a force function in the input (temperature)–output (local mechanical strains) relationship, and stiffness identification is conducted iteratively via correlating the calculated strain responses with measured data. The nonlinear model of the joint is reproduced with a number of linear local models in different deformation scenarios that are corresponding to different temperature ranges. The stiffness parameters can be identified using a multimodel approach. Numerical results show that the method is effective and reliable to identify the nonlinear connection stiffness of the ‘Que-Ti’ accurately with the temperature change even with 10% noise in measurements. The monitoring data from a long-term monitoring system installed in a typical heritage Tibetan building is used to further verify the method. The experimental results show that the identified stiffness by the proposed method with nonlinear connection stiffness model can get better results than that obtained from the linear connection stiffness model.

Funder

the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period

Beijing Natural Science Foundation of China

National Natural Science Foundation of China Grant

the 111 project of the Ministry of Education and the Bureau of Foreign Experts of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3