Effective Inertia Coefficients Prediction and Cell Size Effects in Thickness Direction of Periodic Composite Plates

Author:

Huang Zhiwei1,Xing Yufeng1,Gao Yahe2ORCID

Affiliation:

1. Institute of Solid Mechanics, Beihang University, Beijing 100191, P. R. China

2. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, P. R. China

Abstract

This paper develops a new homogenization method for free vibration problems of periodic composite plates. In this new method, three-dimensional (3D) periodic plates are equivalent to Reissner–Mindlin plates with both effective stiffnesses and effective inertia coefficients. The effective stiffnesses for the dynamic problems are the same as those for the static problems, and they can be achieved by the equivalence principle of macro- and microscopic internal virtual work. To fully take the inertia effects into account, the effective inertia coefficients including the effective translational, translational–rotational and rotational inertias are determined by the two-scale equivalence principle of kinetic energies under three rigid modes. In addition, cell size effects in the thickness direction of composite plates are investigated by using the proposed method and the asymptotic homogenization method (AHM). Numerical experiments validate the effectiveness of the proposed equivalent method for different scale factors, and show that the rotational inertia cannot be ignored for out-of-plane deformations, especially for higher-order modes. Besides, numerical comparisons show that the cell size effects are not negligible when using the AHM to analyze the out-of-plane deformations, and three or more repeated unit cells in the thickness direction are required to ensure accuracy.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3