Machine Learning to Identify Dynamic Properties of Railway Track Components

Author:

Kaewunruen Sakdirat1,Sresakoolchai Jessada1,Stittle Henry1

Affiliation:

1. School of Engineering, University of Birmingham, Birmingham B15 2TT, UK

Abstract

Investigating the condition of rail track components is important for track maintenance and developing a greater understanding of track design. Railway inspection can be destructive and non-destructive approaches. In the railway industry, the non-destructive approaches are preferred because they retain the track in operation thus significantly reducing the cost of fault testing. One of the non-destructive approaches is using machine learning which is applied in this study. Field measurements and advanced analysis of results are used to extract track properties. This study creates, tunes and examines the validity of different machine learning techniques. The aim is to extract the dynamic track properties from the in-field measurements without needing the intermediary steps, saving both time and effort. Contributions of this study demonstrate that machine learning techniques have the potential to save cost and time for railway inspection. Moreover, the accuracy is satisfied. The following models are produced: Linear Regression, K-Nearest Neighbors, Gradient Boosting and a Convolutional Neural Network. We observe the limitations of linear regression and tune the remainder, producing three models with low errors.

Funder

European Commission for the financial sponsorship of the H2020-RISE

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3