Hybrid Modeling of a Simply-Supported Bridge Under Opposite Moving Loads via Multi-Layered Feed-Forward ANN
-
Published:2023-09-27
Issue:
Volume:
Page:
-
ISSN:0219-4554
-
Container-title:International Journal of Structural Stability and Dynamics
-
language:en
-
Short-container-title:Int. J. Str. Stab. Dyn.
Author:
Panda Susmita1ORCID,
Banerjee Arnab1ORCID,
Manna Bappaditya1ORCID
Affiliation:
1. Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
Abstract
Keeping in view the design of short to medium-span bridges in critical locations such as road/river crossings under the action of oppositely moving high-speed loads, this paper presents a hybrid model for the prediction of dynamic displacement employing a theoretical non-dimensional framework aided by an artificial neural network (ANN). The introduction of such a hybrid model reduces parametric space and time. The feed-forward ANN is implemented to train the comprehensive data set obtained from the non-dimensional theoretical scheme. The dimensionless input to ANN comprises the bridge and load parameters, whereas maximum dynamic displacement is the output parameter. The robustness and efficiency of the proposed surrogate ANN framework in terms of computational efficiency are compared with the conventional mode-superposition method formulated in dimensionless form. The training of test and validated data sets results in best-fit models with optimistic statistical metrics and accuracy [Formula: see text] 6%. Moreover, the sensitivity of different parameters to the displacement response is highlighted using Pearson’s correlation and Quantile–Quantile plots. To incorporate the best-fit models into the design by bypassing the high-fidelity model, a user-friendly interface is developed, confirming the standards of the high-speed rating code (TZY2014-232 2014). Such interfaces have the potential for wide application in the preliminary design of short-to medium-span bridges under opposite moving loads in critical locations such as crossing valleys, rivers, and railroads.
Funder
Scientific and Useful Profound Research Advancement
Core Research Grant
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献