Feedback Control for Structural Health Monitoring in a Smart Aggregate Based Sensor Network

Author:

Chen Jian12,Li Peng3,Song Gangbing3,Ren Zhang4,Tan Yu12,Zheng Yongjun12

Affiliation:

1. College of Engineering, China Agricultural University, Beijing 100083, China

2. Key Laboratory of Soil-Machine-Plant System Technology, Ministry of Agriculture, Beijing 100083, China

3. Department of Mechanical Engineering, University of Houston, Houston 77204, USA

4. Beihang University, Beijing 100191, China

Abstract

The concept of smart aggregates, a distributed intelligent multi-purpose sensor network for civil structures, has been implemented to address three important issues including early-age concrete strength monitoring, impact detection and evaluation, and structural health monitoring. This paper presents mainly the employment of smart aggregates' active sensing property to form feedback in a sensor network to reduce damage-location detection time for lower power cost. Firstly, the concept of smart aggregates and the principle of a smart-aggregate-based sensor network are outlined. Next, the data pretreatment methods, including the sensor observation estimation model and the wavelet-packet-based signal processing algorithm, are proposed. A crucial concept using the damage index is also introduced. Moreover, the concept of the geometry structure matching method with the knowledge of an expert system is presented to determine which sensor is the optimal actuator. Finally, the data pretreatment algorithm and the geometry structure matching method are evaluated for a two-story concrete frame instrumented with smart aggregates as a testing object by means of actual experiments. The testing results demonstrate that the proposed algorithms are feasible and perform well in selecting optimal actuators of the sensor network for detecting damage locations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3