Abstract
In this work, the piezoceramic-based transducers are used to perform the structural health monitoring (SHM) and interface damage detecting of non-ductile reinforced concrete (RC) frames retrofitted by post-installed RC walls. In order to develop the post-embedded piezoceramic-based transducers that can be used to identify interface failure or cracks between two structural members in retrofit construction, this work adopts the cyclic loading to test two specimens with post-embedded piezoceramic-based transducers (PPT). Since the failure of an interface between the post-installed wall and beam occurs, one of the specimens has damage in the foundation and existing boundary column and the other has damage in the top ends of column and wall. During the cyclic loading test, one transducer was used as an actuator to generate the stress waves and the other transducers were used as the sensors to detect the waves. In damaged specimens, the existence and locations of cracks and the interface damage can be detected by analyzing the wave response. Moreover, the severity of damage to the specimens can also be estimated. The experimental results indicate the effectiveness of the piezoceramic-based approach in the SHM and locating damage in shear-critical RC structural members under the seismic loading.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献