Affiliation:
1. National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India
2. School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632 014, India
Abstract
Sound radiation and transmission loss characteristics of variable stiffness composite plate reinforced with the curvilinear fibers are investigated numerically. The formulation is developed using higher-order shear flexible finite element model combined with Helmholtz wave equation. The governing equations obtained using Hamilton’s approach are further solved through the modal super position method to analyze the vibration response under steady state excitation. The inherent material damping of the laminate is accounted through the modal damping calculated using the modal strain energy approach. The acoustic pressure of the variable stiffness laminates is estimated using the Raleigh integral. Subsequently, acoustic response characteristics such as acoustic power level, radiation efficiency, directivity pattern, and transmission loss from the laminates are predicted using the estimated sound pressure for various forcing frequencies. A parametric study covering a wide range of design variables including center and edge fiber angles, lamination scheme, thickness ratio, and boundary conditions on the acoustic sound behavior arising from the vibration of curvilinear fiber composite plate is detailed. This study reveals that the acoustic response of the curvilinear fiber composite plate is significantly influenced by the curvilinear fiber angles at the center/edge fiber angle of the layers. It is hoped that the results obtained here will be useful for designers in developing structures with desired acoustic response characteristics.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献