Vibration Analysis of Bistable Unsymmetric Laminates with Curvilinear Fiber Paths

Author:

Akhil K. S.1,Anilkumar P. M.1,Haldar A.2,Rao B. N.1

Affiliation:

1. Structural Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India

2. Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India

Abstract

Multistable laminates have been actively studied in recent years due to its potential applications in morphing and energy harvesting devices. Variable stiffness (VS) bistable laminates provide opportunities for further improvements in design space in comparison with constant stiffness bistable laminates. The snap-through process involving shape transition between the stable configurations is highly nonlinear in nature and exhibits rich dynamics. Exploiting the dynamic characteristics during the snap-through transition is of considerable interest in designing the morphing structural components. In this paper, we present a semi-analytical model based on Rayleigh–Ritz approach in conjunction with Hamilton’s principle to predict the natural frequencies of bistable VS laminates. The obtained results are compared with the results from the full geometrically nonlinear finite element (FE) model. The proposed FE model is further extended to study the dynamics of VS laminates subjected to external forces with different amplitudes. Subsequently, a parametric study is performed to explore the effect of different curvilinear fiber alignments on natural frequencies, mode shapes, free vibration characteristics and forced vibration characteristics (single-well and cross-well vibrations).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3