Prediction of Thermal-Induced Buckling Failures of Ballasted Railway Tracks Using Artificial Neural Network (ANN)

Author:

Ngamkhanong Chayut1,Kaewunruen Sakdirat2

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand

2. Department of Civil Engineering, School of Engineering, University of Birmingham, Edgbaston B15 2TT, UK

Abstract

This paper investigates the possibility for implementing machine learning-aided prediction in analyzing the buckling phenomena of ballasted railway tracks induced by extreme temperature. In this study, artificial neural networks (ANNs) have been developed to identify the relationship between various ballasted track conditions and outputs, namely safe temperature and buckling temperature. The variables included in the objective function of the optimization problems are the lateral resistance of ballasted track provided by ballast-sleeper interaction, torsional resistance provided by fastening systems, and misalignment of the track. Due to its complexity in parameter combinations, the objective of this study is to create predictive models with the aim of minimizing the usage of scarce resources. Thus, this paper is the first to develop a novel machine learning-aided prediction of railway track buckling due to extreme temperature. Comprehensively, all 353 datasets of the safe and buckling temperatures derived from previous finite element (FE) simulation results have been collected and trained. Note that the mean squared error (MSE) and the coefficient of determination ([Formula: see text] are considered to quantify the performance of the ANN architectures. The optimal ANN architecture with a very high rate of accuracy has been determined and highlighted. Thus, the suggested neural network model can be applied conveniently to help estimate safe and buckling temperatures of the complex track models in order to improve track conditions and thus prevent track buckling in summer.

Funder

H2020-MSCA-RISE

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3