Estimating the occurrence of broken rails in commuter railroads with machine learning algorithms

Author:

Kang Di1ORCID,Dai Junyan1ORCID,Liu Xiang1ORCID,Bian Zheyong2,Zaman Asim1,Wang Xin1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Rutgers University, New Brunswick, NJ, USA

2. Department of Supply Chain and Logistics Technology, University of Houston, Houston, TX, USA

Abstract

Broken rail prevention is critical for ensuring track infrastructure safety. With the increasing availability of rail data, the opportunity for data-driven analyses emerges as a promising avenue for enhancing railroad safety. While previous research has predominantly concentrated on predicting broken rails within the context of freight railroads, the attention afforded to commuter railroads has been limited. To address this research gap, this paper presents an analytical modeling framework based on machine learning (ML) algorithms (including LightGBM, XGBoost, Random Forests, and Logistic Regression) to investigate the occurrence of broken rails on commuter rail segments. It leverages various features such as gradient, curvature, annual traffic, operational speed, and the history of prior rail defects. We use oversampling techniques, including ADASYN, random oversampling, and SMOTE, to address the issue of imbalanced data. This challenge arises due to the majority of commuter rail segments not experiencing any broken rails during the study period, resulting in a small sample size of broken rail instances. The findings indicate that, for the dataset employed in this study, LightGBM, in conjunction with random oversampling, exhibits superior performance. Based on the feature importance results, the critical factors influencing the prediction of broken rail occurrences on this commuter railroad are gradient, operational speed, and prior rail defects.

Funder

Federal Railroad Administration

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3