Standard WCSPH for Free-Surface Multi-Phase Flows with a Large Density Ratio

Author:

Manenti Sauro1ORCID

Affiliation:

1. Department of Civil Engineering and Architecture, University of Pavia. Via Ferrata, 3, Pavia 27100, Italy

Abstract

The standard weakly compressible Smoothed Particle Hydrodynamics (WCSPH) is successfully applied to multi-phase problems involving fluids with similar densities, but when density ratio increases at some order of magnitude, serious instability phenomena occur at the interface. Several remedies have been proposed based on numerical correctives that deviate from standard formulation, increasing the algorithm complexity and, sometimes, the computational cost. In this study, the standard SPH has been adapted to treat free-surface multi-phase flows with a large density ratio through a modified form of the governing equations which is based on the specific volume (i.e. the inverse of particle volume) instead of density: the former is continuous across the fluid interface while the latter is not and generates numerical instability. Interface sharpness is assured without cohesion forces; kernel truncation at the interface is avoided. The model, relatively simple to implement, is tested by simulating two-phase dam breaking for two configurations: kinematic and dynamic features are compared with reference data showing good agreement despite the reduced computational effort.

Publisher

World Scientific Pub Co Pte Lt

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3