Commuting planar polynomial vector fields for conservative Newton systems

Author:

Nagloo Joel1,Ovchinnikov Alexey23,Thompson Peter4

Affiliation:

1. CUNY Bronx Community College, Department of Mathematics and Computer Science, 2155 University Avenue, Bronx, NY 10453, USA

2. CUNY Queens College, Department of Mathematics, 65-30 Kissena Blvd, Queens, NY 11367, USA

3. CUNY Graduate Center, Ph.D. programs in Mathematics and Computer Science, 365 Fifth Avenue, New York, NY 10016, USA

4. CUNY Graduate Center, Ph.D. program in Mathematics, 365 Fifth Avenue, New York, NY 10016, USA

Abstract

We study the problem of characterizing polynomial vector fields that commute with a given polynomial vector field on a plane. It is a classical result that one can write down solution formulas for an ODE that corresponds to a planar vector field that possesses a linearly independent commuting vector field. This problem is also central to the question of linearizability of vector fields. Let [Formula: see text], where [Formula: see text] is a field of characteristic zero, and [Formula: see text] the derivation that corresponds to the differential equation [Formula: see text] in a standard way. Let also [Formula: see text] be the Hamiltonian polynomial for [Formula: see text], that is [Formula: see text]. It is known that the set of all polynomial derivations that commute with [Formula: see text] forms a [Formula: see text]-module [Formula: see text]. In this paper, we show that, for every such [Formula: see text], the module [Formula: see text] is of rank [Formula: see text] if and only if [Formula: see text]. For example, the classical elliptic equation [Formula: see text], where [Formula: see text], falls into this category.

Funder

NSF

NSA

CUNY CIRG

PSC-CUNY

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3