Simple current extensions beyond semi-simplicity

Author:

Creutzig Thomas1,Kanade Shashank1,Linshaw Andrew R.2

Affiliation:

1. Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada

2. Department of Mathematics, University of Denver, Denver, CO 80208, USA

Abstract

Let [Formula: see text] be a simple vertex operator algebra (VOA) and consider a representation category of [Formula: see text] that is a vertex tensor category in the sense of Huang–Lepowsky. In particular, this category is a braided tensor category. Let [Formula: see text] be an object in this category that is a simple current of order two of either integer or half-integer conformal dimension. We prove that [Formula: see text] is either a VOA or a super VOA. If the representation category of [Formula: see text] is in addition ribbon, then the categorical dimension of [Formula: see text] decides this parity question. Combining with Carnahan’s work, we extend this result to simple currents of arbitrary order. Our next result is a simple sufficient criterion for lifting indecomposable objects that only depends on conformal dimensions. Several examples of simple current extensions that are [Formula: see text]-cofinite and non-rational are then given and induced modules listed.

Funder

NSERC

Simons Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ordinary modules for vertex algebras of 1|2;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-08-17

2. Preservation of Loewy diagrams under exact functors;Journal of Pure and Applied Algebra;2024-06

3. A general mirror equivalence theorem for coset vertex operator algebras;Science China Mathematics;2024-05-31

4. Tensor category KLk(sl2n) via minimal affine W-algebras at the non-admissible level k=2n+12;Journal of Pure and Applied Algebra;2024-05

5. Tensor Categories for Vertex Operator Superalgebra Extensions;Memoirs of the American Mathematical Society;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3