Tensor Categories for Vertex Operator Superalgebra Extensions

Author:

Creutzig Thomas,Kanade Shashank,McRae Robert

Abstract

Let V V be a vertex operator algebra with a category C \mathcal {C} of (generalized) modules that has vertex tensor category structure, and thus braided tensor category structure, and let A A be a vertex operator (super)algebra extension of V V . We employ tensor categories to study untwisted (also called local) A A -modules in C \mathcal {C} , using results of Huang-Kirillov-Lepowsky that show that A A is a (super)algebra object in C \mathcal {C} and that generalized A A -modules in C \mathcal {C} correspond exactly to local modules for the corresponding (super)algebra object. Both categories, of local modules for a C \mathcal {C} -algebra and (under suitable conditions) of generalized A A -modules, have natural braided monoidal category structure, given in the first case by Pareigis and Kirillov-Ostrik and in the second case by Huang-Lepowsky-Zhang.

Our main result is that the Huang-Kirillov-Lepowsky isomorphism of categories between local (super)algebra modules and extended vertex operator (super)algebra modules is also an isomorphism of braided monoidal (super)categories. Using this result, we show that induction from a suitable subcategory of V V -modules to A A -modules is a vertex tensor functor. Two applications are given:

First, we derive Verlinde formulae for regular vertex operator superalgebras and regular 1 2 Z \frac {1}{2}\mathbb {Z} -graded vertex operator algebras by realizing them as (super)algebra objects in the vertex tensor categories of their even and Z \mathbb {Z} -graded components, respectively.

Second, we analyze parafermionic cosets C = C o m ( V L , V ) C=\mathrm {Com}(V_L,V) where L L is a positive definite even lattice and V V is regular. If the vertex tensor category of either V V -modules or C C -modules is understood, then our results classify all inequivalent simple modules for the other algebra and determine their fusion rules and modular character transformations. We illustrate both directions with several examples.

Publisher

American Mathematical Society (AMS)

Reference180 articles.

1. Rationality, regularity, and 𝐶₂-cofiniteness;Abe, Toshiyuki;Trans. Amer. Math. Soc.,2004

2. Fusion rules for the vertex operator algebra 𝑀(1) and 𝑉⁺_{𝐿};Abe, Toshiyuki;Comm. Math. Phys.,2005

3. Representations of the 𝑁=2 superconformal vertex algebra;Adamović, Dražen;Internat. Math. Res. Notices,1999

4. Vertex algebra approach to fusion rules for 𝑁=2 superconformal minimal models;Adamović, Dražen;J. Algebra,2001

5. The vertex algebras ℛ^{(𝓅)} and 𝒱^{(𝓅)};Adamović, Dražen;Comm. Math. Phys.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ordinary modules for vertex algebras of 1|2;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-08-17

2. Boundary vertex algebras for 3d $\mathcal{N}=4$ rank-0 SCFTs;SciPost Physics;2024-08-16

3. Quasi-lisse extension of affine sl2 à la Feigin–Tipunin;Advances in Mathematics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3