Random polytopes obtained by matrices with heavy-tailed entries

Author:

Guédon O.1,Litvak A. E.2,Tatarko K.2

Affiliation:

1. Laboratoire d’Analyse et de Mathématiques Appliquées, Université Paris-Est Marne-la-Vallée, 5, Boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallée, Cedex 2, France

2. Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2G1, Canada

Abstract

Let [Formula: see text] be an [Formula: see text] random matrix with independent entries and such that in each row entries are i.i.d. Assume also that the entries are symmetric, have unit variances, and satisfy a small ball probabilistic estimate uniformly. We investigate properties of the corresponding random polytope [Formula: see text] in [Formula: see text] (the absolute convex hull of rows of [Formula: see text]). In particular, we show that [Formula: see text] where [Formula: see text] depends only on parameters in small ball inequality. This extends results of [A. E. Litvak, A. Pajor, M. Rudelson and N. Tomczak-Jaegermann, Smallest singular value of random matrices and geometry of random polytopes, Adv. Math. 195 (2005) 491–523] and recent results of [F. Krahmer, C. Kummerle and H. Rauhut, A quotient property for matrices with heavy-tailed entries and its application to noise-blind compressed sensing, preprint (2018); arXiv:1806.04261]. This inclusion is equivalent to so-called [Formula: see text]-quotient property and plays an important role in compressed sensing (see [F. Krahmer, C. Kummerle and H. Rauhut, A quotient property for matrices with heavy-tailed entries and its application to noise-blind compressed sensing, preprint (2018); arXiv:1806.04261] and references therein).

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3