On the geometry of polytopes generated by heavy-tailed random vectors

Author:

Guédon Olivier1,Krahmer Felix2,Kümmerle Christian3,Mendelson Shahar45,Rauhut Holger6

Affiliation:

1. LAMA, Univ Gustave Eiffel, UPEM, Univ Paris Est Creteil, CNRS, F-77447, Marne-la-Vallée, France

2. Department of Mathematics, Technical University of Munich, 85748 Garching bei München, Germany

3. Department of Applied Mathematics & Statistics, Johns Hopkins University, Baltimore, United States

4. LPSM, Sorbonne University, Paris, France

5. Mathematical Sciences Institute, The Australian National University, Canberra, Australia

6. Chair for Mathematics of Information Processing, RWTH Aachen University, 52056 Aachen, Germany

Abstract

We study the geometry of centrally symmetric random polytopes, generated by [Formula: see text] independent copies of a random vector [Formula: see text] taking values in [Formula: see text]. We show that under minimal assumptions on [Formula: see text], for [Formula: see text] and with high probability, the polytope contains a deterministic set that is naturally associated with the random vector — namely, the polar of a certain floating body. This solves the long-standing question on whether such a random polytope contains a canonical body. Moreover, by identifying the floating bodies associated with various random vectors, we recover the estimates that were obtained previously, and thanks to the minimal assumptions on [Formula: see text], we derive estimates in cases that were out of reach, involving random polytopes generated by heavy-tailed random vectors (e.g., when [Formula: see text] is [Formula: see text]-stable or when [Formula: see text] has an unconditional structure). Finally, the structural results are used for the study of a fundamental question in compressive sensing — noise blind sparse recovery.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3