The Noether–Lefschetz locus of surfaces in toric threefolds

Author:

Bruzzo Ugo12,Grassi Antonella3

Affiliation:

1. Area di Matematica, Scuola Internazionale Superiore di Studi, Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy

2. Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, 34149 Trieste, Italy

3. David Rittenhouse Laboratory, Department of Mathematics, University of Pennsylvania, 209 S 33rd Street, Philadelphia, PA 19104, USA

Abstract

The Noether–Lefschetz theorem asserts that any curve in a very general surface [Formula: see text] in [Formula: see text] of degree [Formula: see text] is a restriction of a surface in the ambient space, that is, the Picard number of [Formula: see text] is [Formula: see text]. We proved previously that under some conditions, which replace the condition [Formula: see text], a very general surface in a simplicial toric threefold [Formula: see text] (with orbifold singularities) has the same Picard number as [Formula: see text]. Here we define the Noether–Lefschetz loci of quasi-smooth surfaces in [Formula: see text] in a linear system of a Cartier ample divisor with respect to a [Formula: see text]-regular, respectively 0-regular, ample Cartier divisor, and give bounds on their codimensions. We also study the components of the Noether–Lefschetz loci which contain a line, defined as a rational curve which is minimal in a suitable sense.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Noether–Lefschetz theorem in arbitrary characteristic;Journal of Algebraic Geometry;2024-03-01

2. On the Hodge conjecture for quasi-smooth intersections in toric varieties;São Paulo Journal of Mathematical Sciences;2021-07-06

3. Small codimension components of the Hodge locus containing the Fermat variety;Communications in Contemporary Mathematics;2021-05-17

4. Codimension bounds for the Noether–Lefschetz components for toric varieties;European Journal of Mathematics;2021-03-30

5. Algebraic hyperbolicity for surfaces in toric threefolds;Journal of Algebraic Geometry;2021-01-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3