Author:
Bruzzo Ugo,Montoya William D.
Abstract
AbstractFor a quasi-smooth hypersurface X in a projective simplicial toric variety $$\mathbb {P}_{\Sigma }$$
P
Σ
, the morphism $$i^*:H^p(\mathbb {P}_{\Sigma })\rightarrow H^p(X)$$
i
∗
:
H
p
(
P
Σ
)
→
H
p
(
X
)
induced by the inclusion is injective for $$p=\dim X$$
p
=
dim
X
and an isomorphism for $$p<\dim X-1$$
p
<
dim
X
-
1
. This allows one to define the Noether–Lefschetz locus $$\mathrm{NL}_{\beta }$$
NL
β
as the locus of quasi-smooth hypersurfaces of degree $$\beta $$
β
such that $$i^*$$
i
∗
acting on the middle algebraic cohomology is not an isomorphism. We prove that, under some assumptions, if $$\dim \mathbb {P}_{\Sigma }=2k+1$$
dim
P
Σ
=
2
k
+
1
and $$k\beta -\beta _0=n\eta $$
k
β
-
β
0
=
n
η
, $$n\in \mathbb {N}$$
n
∈
N
, where $$\eta $$
η
is the class of a 0-regular ample divisor, and $$\beta _0$$
β
0
is the anticanonical class, every irreducible component V of the Noether–Lefschetz locus quasi-smooth hypersurfaces of degree $$\beta $$
β
satisfies the bounds $$n+1\leqslant \mathrm{codim}\,Z \leqslant h^{k-1,\,k+1}(X)$$
n
+
1
⩽
codim
Z
⩽
h
k
-
1
,
k
+
1
(
X
)
.
Funder
Scuola Internazionale Superiore di Studi Avanzati - SISSA
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Batyrev, V.V., Cox, D.A.: On the Hodge structure of projective hypersurfaces in toric varieties. Duke Math. J. 75(2), 293–338 (1994)
2. Beltrametti, M., Robbiano, L.: Introduction to the theory of weighted projective spaces. Exposition. Math. 4(2), 111–162 (1986)
3. Contemporary Mathematics;J Brevik,2014
4. Bruzzo, U., Grassi, A.: Picard group of hypersurfaces in toric 3-folds. Internat. J. Math. 23(2), # 1250028 (2012)
5. Bruzzo, U., Grassi, A.: The Noether–Lefschetz locus of surfaces in toric threefolds. Commun. Contemp. Math. 20(5), # 1750070 (2018)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献