ASTROD AND ASTROD I — OVERVIEW AND PROGRESS

Author:

NI WEI-TOU12

Affiliation:

1. Center for Gravitation and Cosmology, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, China, 21008, China

2. National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China, 100012, China

Abstract

In this paper, we present an overview of ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD I mission concepts and studies. The missions employ deep-space laser ranging using drag-free spacecraft to map the gravitational field in the solar-system. The solar-system gravitational field is determined by three factors: the dynamic distribution of matter in the solar system; the dynamic distribution of matter outside the solar system (galactic, cosmological, etc.) and gravitational waves propagating through the solar system. Different relativistic theories of gravity make different predictions of the solar-system gravitational field. Hence, precise measurements of the solar-system gravitational field test these relativistic theories, in addition to gravitational wave observations, determination of the matter distribution in the solar-system and determination of the observable (testable) influence of our galaxy and cosmos. The tests and observations include: (i) a precise determination of the relativistic parameters β and γ with 3–5 orders of magnitude improvement over previous measurements; (ii) a 1–2 order of magnitude improvement in the measurement of G; (iii) a precise determination of any anomalous, constant acceleration Aadirected towards the Sun; (iv) a measurement of solar angular momentum via the Lense-Thirring effect; (v) the detection of solar g-mode oscillations via their changing gravity field, thus, providing a new eye to see inside the Sun; (vi) precise determination of the planetary orbit elements and masses; (vii) better determination of the orbits and masses of major asteroids; (viii) detection and observation of gravitational waves from massive black holes and galactic binary stars in the frequency range 50 μHz to 5 mHz; and (ix) exploring background gravitational waves. The baseline scheme of ASTROD is to have two spacecraft in separate solar orbits and one spacecraft near the Earth–Sun L1/L2 point carrying a payload of a proof mass, two telescopes, two 1–2 W lasers with spares, a clock and a drag-free system ranging coherently among one another using lasers. ASTROD I is a first step towards ASTROD. Its scheme is to have one spacecraft in a Venus-gravity-assisted solar orbit, ranging optically with ground stations with less ambitious, but still significant scientific goals.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3