EMPIRICAL FOUNDATIONS OF THE RELATIVISTIC GRAVITY

Author:

NI WEI-TOU1

Affiliation:

1. Center for Gravitation and Cosmology, Solar-System Division, Purple Mountain Observatory, Chinese Academy of Sciences, No. 2, Beijing W. Rd., Nanjing, 210008, China

Abstract

In 1859, Le Verrier discovered the mercury perihelion advance anomaly. This anomaly turned out to be the first relativistic-gravity effect observed. During the 141 years to 2000, the precisions of laboratory and space experiments, and astrophysical and cosmological observations on relativistic gravity have been improved by 3 orders of magnitude. In 1999, we envisaged a 3–6 order improvement in the next 30 years in all directions of tests of relativistic gravity. In 2000, the interferometric gravitational wave detectors began their runs to accumulate data. In 2003, the measurement of relativistic Shapiro time-delay of the Cassini spacecraft determined the relativistic-gravity parameter γ to be 1.000021 ± 0.000023 of general relativity — a 1.5-order improvement. In October 2004, Ciufolini and Pavlis reported a measurement of the Lense–Thirring effect on the LAGEOS and LAGEOS2 satellites to be 0.99 ± 0.10 of the value predicted by general relativity. In April 2004, Gravity Probe B (Stanford relativity gyroscope experiment to measure the Lense–Thirring effect to 1%) was launched and has been accumulating science data for more than 170 days now. μSCOPE (MICROSCOPE: MICRO-Satellite à trainée Compensée pour l'Observation du Principle d'Équivalence) is on its way for a 2008 launch to test Galileo equivalence principle to 10-15. LISA Pathfinder (SMART2), the technological demonstrator for the LISA (Laser Interferometer Space Antenna) mission is well on its way for a 2009 launch. STEP (Satellite Test of Equivalence Principle), and ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) are in good planning stage. Various astrophysical tests and cosmological tests of relativistic gravity will reach precision and ultra-precision stages. Clock tests and atomic interferometry tests of relativistic gravity will reach an ever-increasing precision. These will give revived interest and development both in experimental and theoretical aspects of gravity, and may lead to answers to some profound questions of gravity and the cosmos.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Schwarzschild Spacetimes;Differential Geometry and General Relativity;2023

2. Some Bianchi Type Viscous Holographic Dark Energy Cosmological Models in the Brans–Dicke Theory;Advances in Astronomy;2022-11-02

3. Echoes of the gravitational decoupling: scalar perturbations and quasinormal modes of hairy black holes;The European Physical Journal Plus;2022-10-27

4. Solar-system tests of the relativistic gravity;International Journal of Modern Physics D;2016-12

5. Gravitational wave detection in space;International Journal of Modern Physics D;2016-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3