COSMOLOGY WITH MIRROR DARK MATTER I: LINEAR EVOLUTION OF PERTURBATIONS

Author:

CIARCELLUTI PAOLO12

Affiliation:

1. Dipartimento di Fisica, Università di L'Aquila, 67010 Coppito AQ, Italy

2. INFN, Laboratori Nazionali del Gran Sasso, 67010 Assergi AQ, Italy

Abstract

This is the first paper of a series devoted to the study of the cosmological implications of the parallel mirror world with the same microphysics as the ordinary one, but having smaller temperature, with a limit set by the BBN constraints. The difference in temperature of the ordinary and mirror sectors generates shifts in the key epochs for structure formation, which proceeds in the mirror sector under different conditions. We consider adiabatic scalar primordial perturbations as an input and analyze the trends of all the relevant scales for structure formation (Jeans length and mass, Silk scale, horizon scale) for both ordinary and mirror sectors, comparing them with the CDM case. These scales are functions of the fundamental parameters of the theory (the temperature of the mirror plasma and the amount of mirror baryonic matter), and in particular they are influenced by the difference between the cosmological key epochs in the two sectors. Then we use a numerical code to compute the evolution in linear regime of density perturbations for all the components of a Mirror Universe: ordinary baryons and photons, mirror baryons and photons, and possibly cold dark matter. We analyze the evolution of the perturbations for different values of mirror temperature and baryonic density, and obtain that for x=T′/T less than a typical value x eq , for which the mirror baryon–photon decoupling happens before the matter–radiation equality, mirror baryons are equivalent to the CDM for the linear structure formation process. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3