Exploring mirror twin Higgs cosmology with present and future weak lensing surveys

Author:

Zu Lei,Zhang Chi,Chen Hou-Zun,Wang Wei,Tsai Yue-Lin Sming,Tsai Yuhsin,Luo Wentao,Fan Yi-Zhong

Abstract

Abstract We explore the potential of precision cosmological data to study non-minimal dark sectors by updating the cosmological constraint on the mirror twin Higgs model (MTH). The MTH model addresses the Higgs little hierarchy problem by introducing dark sector particles. In this work, we perform a Bayesian global analysis that includes the latest cosmic shear measurement from the DES three-year survey and the Planck CMB and BAO data. In the early Universe, the mirror baryon and mirror radiation behave as dark matter and dark radiation, and their presence modifies the Universe's expansion history. Additionally, the scattering between mirror baryon and photon generates the dark acoustic oscillation process, suppressing the matter power spectrum from the cosmic shear measurement. We demonstrate how current data constrain these corrections to the ΛCDM cosmology and find that for a viable solution to the little hierarchy problem, the proportion of MTH dark matter cannot exceed about 30% of the total dark matter density, unless the temperature of twin photon is less than 30% of that of the standard model photon. While the MTH model is presently not a superior solution to the observed H 0 tension compared to the ΛCDM+ΔN eff model, we demonstrate that it has the potential to alleviate both the H 0 and S 8 tensions, especially if the S 8 tension persists in the future and approaches the result reported by the Planck SZ (2013) analysis. In this case, the MTH model can relax the tensions while satisfying the DES power spectrum constraint up to k ≲ 10 hMpc-1. If the MTH model is indeed accountable for the S 8 and H 0 tensions, we show that the future China Space Station Telescope (CSST) can determine the twin baryon abundance with a 10% level precision.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3