BlackHoleCam: Fundamental physics of the galactic center

Author:

Goddi C.12,Falcke H.13,Kramer M.3,Rezzolla L.4,Brinkerink C.1,Bronzwaer T.1,Davelaar J. R. J.1,Deane R.5,De Laurentis M.4,Desvignes G.3,Eatough R. P.3,Eisenhauer F.6,Fraga-Encinas R.1,Fromm C. M.4,Gillessen S.6,Grenzebach A.7,Issaoun S.1,Janßen M.1,Konoplya R.4,Krichbaum T. P.3,Laing R.8,Liu K.3,Lu R.-S.3,Mizuno Y.4,Moscibrodzka M.1,Müller C.1,Olivares H.4,Pfuhl O.6,Porth O.4,Roelofs F.1,Ros E.3,Schuster K.9,Tilanus R.12,Torne P.3,van Bemmel I.10,van Langevelde H. J.10,Wex N.3,Younsi Z.4,Zhidenko A.4

Affiliation:

1. Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, NL-6500 GL Nijmegen, The Netherlands

2. ALLEGRO/Leiden Observatory, PO Box 9513, NL-2300 RA Leiden, The Netherlands

3. Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany

4. Institut für Theoretische Physik, Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany

5. RATT, Department of Physics, Rhodes University, Grahamstown 6140, South Africa

6. Max-Planck-Institut für Extraterrestrische Physik, D-85748 Garching bei München, Germany

7. ZARM, University of Bremen, Am Fallturm, D-28359 Bremen, Germany

8. ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany

9. IRAM, 300 rue de la Piscine, 38406 St. Martin d’Héres, France

10. Joint Institute for VLBI in Europe, Postbox 2, 7990 AA, Dwingeloo, The Netherlands

Abstract

Einstein’s General theory of relativity (GR) successfully describes gravity. Although GR has been accurately tested in weak gravitational fields, it remains largely untested in the general strong field cases. One of the most fundamental predictions of GR is the existence of black holes (BHs). After the recent direct detection of gravitational waves by LIGO, there is now near conclusive evidence for the existence of stellar-mass BHs. In spite of this exciting discovery, there is not yet direct evidence of the existence of BHs using astronomical observations in the electromagnetic spectrum. Are BHs observable astrophysical objects? Does GR hold in its most extreme limit or are alternatives needed? The prime target to address these fundamental questions is in the center of our own Milky Way, which hosts the closest and best-constrained supermassive BH candidate in the universe, Sagittarius A* (Sgr A*). Three different types of experiments hold the promise to test GR in a strong-field regime using observations of Sgr A* with new-generation instruments. The first experiment consists of making a standard astronomical image of the synchrotron emission from the relativistic plasma accreting onto Sgr A*. This emission forms a “shadow” around the event horizon cast against the background, whose predicted size ([Formula: see text]as) can now be resolved by upcoming very long baseline radio interferometry experiments at mm-waves such as the event horizon telescope (EHT). The second experiment aims to monitor stars orbiting Sgr A* with the next-generation near-infrared (NIR) interferometer GRAVITY at the very large telescope (VLT). The third experiment aims to detect and study a radio pulsar in tight orbit about Sgr A* using radio telescopes (including the Atacama large millimeter array or ALMA). The BlackHoleCam project exploits the synergy between these three different techniques and contributes directly to them at different levels. These efforts will eventually enable us to measure fundamental BH parameters (mass, spin, and quadrupole moment) with sufficiently high precision to provide fundamental tests of GR (e.g. testing the no-hair theorem) and probe the spacetime around a BH in any metric theory of gravity. Here, we review our current knowledge of the physical properties of Sgr A* as well as the current status of such experimental efforts towards imaging the event horizon, measuring stellar orbits, and timing pulsars around Sgr A*. We conclude that the Galactic center provides a unique fundamental-physics laboratory for experimental tests of BH accretion and theories of gravity in their most extreme limits.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3