COSMIC RAYS IN GALAXY CLUSTERS AND THEIR NONTHERMAL EMISSION

Author:

BRUNETTI GIANFRANCO1,JONES THOMAS W.2

Affiliation:

1. IRA-INAF, via P. Gobetti 101, 40129 Bologna, Italy

2. School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455, USA

Abstract

Radio observations prove the existence of relativistic particles and magnetic field associated with the intra-cluster-medium (ICM) through the presence of extended synchrotron emission in the form of radio halos and peripheral relics. This observational evidence has fundamental implications on the physics of the ICM. Nonthermal components in galaxy clusters are indeed unique probes of very energetic processes operating within clusters that drain gravitational and electromagnetic energy into cosmic rays (CRs) and magnetic fields. These components strongly affect the (micro-)physical properties of the ICM, including viscosity and electrical conductivities, and have also potential consequences on the evolution of clusters themselves. The nature and properties of CRs in galaxy clusters, including the origin of the observed radio emission on cluster-scales, have triggered an active theoretical debate in the last decade. Only recently we can start addressing some of the most important questions in this field, thanks to recent observational advances, both in the radio and at high energies. The properties of CRs and of cluster nonthermal emissions depend on the dynamical state of the ICM, the efficiency of particle acceleration mechanisms in the ICM and on the dynamics of these CRs. In this paper, we discuss in some detail the acceleration and transport of CRs in galaxy clusters and the most relevant observational milestones that have provided important steps on our understanding of this physics. Finally, looking forward to the possibilities from new generations of observational tools, we focus on what appear to be the most important prospects for the near future from radio and high-energy observations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 456 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3