Are Radio Minihalos Confined by Cold Fronts in Galaxy Clusters? Minihalos and Large-scale Sloshing in A3444 and MS 1455.0+2232

Author:

Giacintucci S.ORCID,Venturi T.,Markevitch M.ORCID,Brunetti G.,Clarke T. E.ORCID,Kale R.ORCID

Abstract

Abstract We present radio and X-ray studies of A3444 and MS1455.0+2232, two galaxy clusters with radio minihalos in their cool cores. A3444 is imaged using the Giant Metrewave Radio Telescope (GMRT) at 333, 607, and 1300 MHz and the Very Large Array at 1435 MHz. Most of the minihalo is contained within r < 120 kpc, but a fainter extension, stretching out to 380 kpc southwest of the center, is detected at 607 MHz. Using Chandra, we detect four X-ray sloshing cold fronts: three in the cool core at r = 60, 120, and 230 kpc, and a fourth one at r = 400 kpc—in the region of the southwestern radio extension—suggesting that the intracluster medium (ICM) is sloshing on a cluster-wide scale. The radio emission is contained within the envelope defined by these fronts. We also analyzed archival 383 MHz GMRT and Chandra observations of MS 1455.0+2232, which exhibits a known minihalo with its bright part delineated by cold fronts inside the cool core, but with a faint extension beyond the core. Similarly to A3444, we find a cold front at r ∼ 425 kpc, containing the radio emission. Thus the entire diffuse radio emission seen in these clusters appears to be related to large-scale sloshing of the ICM. The radio spectrum of the A3444 minihalo is a power law with a steep index α = 1.0 ± 0.1. The spectrum steepens with increasing distance from the center, as expected if the minihalo originates from reacceleration of relativistic particles by the sloshing-induced turbulence in the ICM.

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3