Engineering decoherence for two-qubit systems interacting with a classical environment

Author:

Rossi Matteo A. C.1,Benedetti Claudia2,Paris Matteo G. A.2

Affiliation:

1. Dipartimento di Fisica e Scienze della Terra "Macedonio Melloni", Universitá degli Studi di Parma, Parco Area delle Scienze 7/A, I-43124 Parma, Italy

2. Dipartimento di Fisica, Universitá degli Studi di Milano, I-20133 Milan, Italy

Abstract

We address the dynamics of a two-qubit system interacting with a classical dephasing environment driven by a Gaussian stochastic process. Upon introducing the concept of entanglement-preserving time, we compare the degrading effects of different environments, e.g. those described by Ornstein–Uhlenbeck (OU) or fractional noise. In particular, we consider pure Bell states and mixtures of Bell states and study the typical values of the entanglement-preserving time for both independent and common environments. We found that engineering environments towards fractional Gaussian noise is useful to preserve entanglement as well as to improve its robustness against noise. We also address entanglement sudden death by studying the sudden-death time as a function of the initial negativity. We found that: (i) the sudden-death time is bounded from below by an increasing function of the initial negativity, (ii) the sudden-death time depends only slightly on the process used to describe the environment and exhibits typicality. Overall, our results show that engineering the environment has only a slight influence over the entanglement sudden-death time, while it represents a valuable resource to increase the entanglement-preserving time, i.e. to maintain entanglement closer to the initial level for a longer interaction time.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3