Entanglement Degradation in Two Interacting Qubits Coupled to Dephasing Environments

Author:

Abdelmagid Rahma1ORCID,Alshehhi Khadija1ORCID,Sadiek Gehad12ORCID

Affiliation:

1. Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates

2. Department of Physics, Ain Shams University, Cairo 11566, Egypt

Abstract

One of the main obstacles toward building efficient quantum computing systems is decoherence, where the inevitable interaction between the qubits and the surrounding environment leads to a vanishing entanglement. We consider a system of two interacting asymmetric two-level atoms (qubits) in the presence of pure and correlated dephasing environments. We study the dynamics of entanglement while varying the interaction strength between the two qubits, their relative frequencies, and their coupling strength to the environment starting from different initial states of practical interest. The impact of the asymmetry of the two qubits, reflected in their different frequencies and coupling strengths to the environment, varies significantly depending on the initial state of the system and its degree of anisotropy. For an initial disentangled, or a Werner, state, as the difference between the frequencies increases, the entanglement decay rate increases, with more persistence at the higher degrees of anisotropy in the former state. However, for an initial anti-correlated Bell state, the entanglement decays more rapidly in the symmetric case compared with the asymmetric one. The difference in the coupling strengths of the two qubits to the pure (uncorrelated) dephasing environment leads to higher entanglement decay in the different initial state cases, though the rate varies depending on the degree of anisotropy and the initial state. Interestingly, the correlated dephasing environment, within a certain range, was found to enhance the entanglement dynamics starting from certain initial states, such as the disentangled, anti-correlated Bell, and Werner, whereas it exhibits a decaying effect in other cases such as the initial correlated Bell state.

Funder

University of Sharjah, Office of Vice Chancellor of Research

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3