MICROTUBULE-KINESIN MECHANICS BY MOLECULAR MODELING

Author:

SONCINI MONICA1,VOTTA EMILIANO1,APRODU IULIANA1,ENEMARK SØREN1,REDAELLI ALBERTO1,DERIU MARCO A.2,MONTEVECCHI FRANCO M.2

Affiliation:

1. Department of Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, Italy

2. Department of Mechanical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Milano, Italy

Abstract

The cellular cytoskeleton contains microtubules which function both as fundamental structural elements as well as motor protein tracks. While the structural property is connected to the properties of the tubulin dimer, its interactions with surrounding dimers and the geometric organization within the microtubule, the transport track properties are related to the interactions between the tubulin dimer and kinesin.Based on the atomistic structures of kinesin and the tubulin dimer, we used molecular modeling to examine the interaction energy and force as function of a spatial distance of separation. From the results, elastic constants describing the system stiffness are obtained. By using the results related to the structure alone, a model of a 1 μm long microtubule is constructed as a network of elastic elements, and its mechanical properties were obtained via finite element method and compared to experimental results.Concerning microtubule-kinesin complex, the interaction strength during a complete cycle of ATP hydrolysis was investigated. As expected, the affinity between the proteins is modulated by the type of nucleotide occupying the nucleotide binding pocket of the motor protein. The work underscores how molecular modeling can provide fundamental protein information in terms of the relation between mechanical properties and structural changes.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Molecular Biology,Structural Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3