SIMULATIONS OF FOUR-DIMENSIONAL SIMPLICIAL QUANTUM GRAVITY AS DYNAMICAL TRIANGULATION

Author:

AGISHTEIN M.E.1,MIGDAL A.A.1

Affiliation:

1. Program in Applied and Computational Mathematics, Fine Hall, Princeton University, Princeton, NJ 08544–1000, USA

Abstract

Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. We studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a function of the gravitational one, separating the phases of opened and closed Universe. When the bare cosmological constant approaches this line from above, the four-volume grows: we reached about 5×104 simplexes, which proved to be sufficient for the statistical limit of infinite volume. However, for the genuine continuum theory of gravity, the parameters of the lattice model should be further adjusted to reach the second order phase transition point, where the correlation length grows to infinity. We varied the gravitational constant, and we found the first order phase transition, similar to the one found in three-dimensional model, except in 4D the fluctuations are rather large at the transition point, so that this is close to the second order phase transition. The average curvature in cutoff units is large and positive in one phase (gravity), and small negative in another (antigravity). We studied the fractal geometry of both phases, using the heavy particle propagator to define the geodesic map, as well as with the old approach using the shortest lattice paths. The heavy propagator geodesic appeared to be much smoother, so that the scaling laws were found, corresponding to finite fractal dimensions: D+~2.3 in the gravity phase and D~4.6 in the antigravity phase. Similar, but somewhat lower numbers were obtained from the heat kernel singularity. The influence of the αR2 terms in 2, 3 and 4 dimensions is discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3