Quantum Solution of Classical Turbulence. Decaying Energy Spectrum

Author:

Migdal AlexanderORCID

Abstract

This paper presents a recent advancement that transforms the problem of decaying turbulence in the Navier-Stokes equations in \(3+1\) dimensions into a Number Theory challenge: finding the statistical limit of the Euler ensemble. We redefine this ensemble as a Markov chain, establishing its equivalence to the quantum statistical theory of \(N\) fermions on a ring, interacting with an external field associated with random fractions of \(\pi\). Analyzing this theory in the turbulent limit, where \(N \to \infty\) and \(\nu \to 0\), we discover the solution as a complex trajectory (instanton) that acts as a saddle point in the path integral over the density of these fermions. By computing the contribution of this instanton to the vorticity correlation function, we obtain an analytic formula for the observable energy spectrum—a complete solution of decaying turbulence derived entirely from first principles without the need for approximations or fitted dimensionless parameters. Our analysis reveals the full spectrum of critical indices in the velocity correlation function in coordinate space, determined by the poles of the Mellin transform, which we prove to be a meromorphic function. Real and complex poles are identified, with the complex poles reflecting dissipation and uniquely determined by the famous complex zeros of the Riemann zeta function. Universal functions of the scaling variables supersede the traditional turbulent scaling laws (K41, Heisenberg, and multifractal). These functions for the energy spectrum, energy decay rate, and velocity correlation significantly deviate from power laws but closely match the results from grid turbulence experiments[1][2] and recent DNS data[3] within experimental error margins.

Publisher

Qeios Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3