Piezoelectric materials selection for sensor applications using finite element and multiple attribute decision-making approaches

Author:

Kumar Anuruddh1,Sharma Anshul1,Kumar Rajeev1,Vaish Rahul1,Chauhan Vishal S1,Bowen C. R.2

Affiliation:

1. School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh 175001, India

2. Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK

Abstract

This paper examines the selection and performance evaluation of a variety of piezoelectric materials for cantilever-based sensor applications. The finite element analysis method is implemented to evaluate the relative importance of materials properties such as Young's Modulus (E), piezoelectric stress constants (e31), dielectric constant (ε) and Poisson's ratio (υ) for cantilever-based sensor applications. An analytic hierarchy process (AHP) is used to assign weights to the properties that are studied for the sensor structure under study. A technique for order preference by similarity to ideal solution (TOPSIS) is used to rank the performance of the piezoelectric materials in the context of sensor voltage outputs. The ranking achieved by the TOPSIS analysis is in good agreement with the results obtained from finite element method simulation. The numerical simulations show that K 0.5 Na 0.5 NbO 3– LiSbO 3 (KNN–LS) materials family is important for sensor application. Young's modulus (E) is most influencing material's property followed by piezoelectric constant (e31), dielectric constant (ε) and Poisson's ratio (υ) for cantilever-based piezoelectric sensor applications.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3