Mechanochemical Activation and Spark Plasma Sintering of the Lead-Free Ba(Fe1/2Nb1/2)O3 Ceramics

Author:

Bochenek DariuszORCID,Bartkowska Joanna A.,Kozielski LucjanORCID,Szafraniak-Wiza IzabelaORCID

Abstract

This paper investigates the impact of the technological process (Mechanochemical Activation (MA) of the powder in combination with the Spark Plasma Sintering (SPS) method) on the final properties of lead-free Ba(Fe1/2Nb1/2)O3 (BFN) ceramic materials. The BFN powders were obtained for different MA duration times (x from 10 to 100 h). The mechanically activated BFN powders were used in the technological process of the BFN ceramics by the SPS method. The measurements of the BFNxMA ceramic samples included the following analysis: Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometry (EDS), DC electrical conductivity, and dielectric properties. X-ray diffractions (XRD) tests showed the appearance of the perovskite phase of BFN powders after 10 h of milling time. The longer milling time (up 20 h) causes the amount of the perovskite phase to gradually increase, and the diffraction peaks are more clearly visible. Short high energy milling times favor a large heterogeneity of the grain shape and size. Increasing the MA milling time to 40 h significantly improves the microstructure of BFN ceramics sintered in the SPS technology. The microstructure becomes fine-grained with clearly visible grain boundaries and higher grain size uniformity. Temperature measurements of the BFN ceramics show a number of interesting dielectric properties, i.e., high values of electric permittivity, relaxation properties with a diffusion phase transition, as well as negative values of dielectric properties occurring at high temperatures. The high electric permittivity values predestines the BFNxMA materials for energy storage applications e.g., high energy density batteries, while the negative values of dielectric properties can be used for shield elements against the electromagnetic radiation.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3