Second-Moment-Based Design of Dynamic Systems with Both Uncertain Excitations and Parameters Via Differentiable Meta-Models

Author:

Savage G. J.1,Son Young Kap2

Affiliation:

1. Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada, N2L 3G1, Canada

2. Department of Mechanical & Automotive Engineering, Andong National University, South Korea

Abstract

Design using second-moments is readily understood by engineers. The output means (first-moments) and covariances (second-moments) are expressed through the means and covariances of the inputs. Further, various performance indexes can be formulated in terms of the second-moments and used to measure the “goodness” of the system’s performance. This paper addresses the design of nonlinear dynamic systems with uncertainty in both the component parameters and the excitations. In order to reduce the computational effort needed for design iterations on the mechanistic model, meta-models are introduced as computationally efficient surrogates. Herein, a novel, differentiable, meta-model that finds the response of dynamic systems with simultaneous component and excitation uncertainty is presented. Operationally, a family of training excitations and sets of training parameters are chosen and stored in respective matrices. Both types of inputs must have some realistic bounds. The corresponding responses, produced by the mechanistic model, make use of all of the training parameter sets interleafed with the training excitations: the time-sampled results are stored in the response matrix. An application of singular value decomposition on the response matrix reveals a repeating pattern of sub-vectors in the left singular vectors. Each sub-vector (viewed as the output) is replaced by a least-squares meta-model that links in the parameter matrix. The result is a parameter-response matrix with the same number of rows as the excitation matrix. Finally, to complete the meta-model, another application of the least-squares paradigm links the excitation matrix to the columns of the parameter-response matrix. Performance indexes, and approximations of their means and covariances through Taylor series, provide cogent optimization measures. The required derivatives are easily obtained from the explicit form of the meta-model. The efficacy of the meta-model is shown through the design of a nonlinear, quarter automobile, system. The accuracy, increased computation speed and robustness of the methodology provide the impact of the work herein. The sources of errors are identified and ways to mitigate them are discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3