Optimization of Engine Torque Management Under Uncertainty for Vehicle Driveline Clunk Using Time-Dependent Metamodels

Author:

Wehrwein Daniel1,Mourelatos Zissimos P.1

Affiliation:

1. Department of Mechanical Engineering, Oakland University, Rochester, MI 48309

Abstract

Quality and performance are two important customer requirements in vehicle design. Driveline clunk negatively affects the perceived quality and must be minimized. This can be achieved using engine torque management, which is part of engine calibration. During a tip-in event, the engine torque rate of rise is limited until all the driveline lash is taken up. The engine torque rate of rise can negatively affect the vehicle throttle response, which determines performance. The engine torque management must be therefore balanced against throttle response. In practice, the engine torque rate of rise is calibrated manually. This article describes an analytical methodology for calibrating the engine torque considering uncertainty, in order to minimize clunk, while still meeting throttle response constraints. A set of predetermined engine torque profiles are considered, which span the practical range of interest. The transmission turbine speed is calculated for each profile using a bond graph vehicle model. Clunk is quantified by the magnitude of the turbine speed spike. Using the engine torque profiles and the corresponding turbine speed responses, a time-dependent metamodel is created using principal component analysis and kriging. The metamodel predicts the turbine speed response due to any engine torque profile and is used in deterministic and reliability-based optimizations to minimize clunk. Compared with commonly used production calibration, the clunk disturbance is reduced substantially without greatly affecting the vehicle throttle response.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3