A Logistic Growth Model for Software Reliability Estimation Considering Uncertain Factors

Author:

Asraful Haque Md.1,Ahmad Nesar1

Affiliation:

1. Department of Computer Engineering, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India

Abstract

Software reliability growth models (SRGMs) are widely used to estimate software reliability by analyzing failure dataset throughout the testing process. A large number of SRGMs have been proposed on a regular basis by researchers since the 1970s. They are represented with a set of assumptions and a set of parameters. One major problem in SRGMs is that the uncertainties surrounding the assumptions and parameters are generally not taken into account by most of them. Therefore, sometimes, the predicted reliability on testing phase significantly varies in actual operational phase. This paper presents a logistic growth model that incorporates a special parameter to consider the effects of all possible uncertainties. A systematic analysis is carried out to identify the major uncertain factors and their impacts on the fault detection rate. The applicability of the model is shown by validating it on two different real datasets that are commonly used in various studies. The comparisons with nine established models in terms of mean square error (MSE), variance, predictive-ratio risk (PRR), [Formula: see text]and AIC have been presented.

Funder

MeitY, Government of India

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3