Reduction of Redundant Rules in Association Rule Mining-Based Bug Assignment

Author:

Sharma Meera1,Tandon Abhishek2,Kumari Madhu3,Singh V. B.3

Affiliation:

1. Swami Shrddhanand College, University of Delhi, Delhi, India

2. SSCBS, University of Delhi, Delhi, India

3. Delhi College of Arts and Commerce, University of Delhi, Delhi, India

Abstract

Bug triaging is a process to decide what to do with newly coming bug reports. In this paper, we have mined association rules for the prediction of bug assignee of a newly reported bug using different bug attributes, namely, severity, priority, component and operating system. To deal with the problem of large data sets, we have taken subsets of data set by dividing the large data set using [Formula: see text]-means clustering algorithm. We have used an Apriori algorithm in MATLAB to generate association rules. We have extracted the association rules for top 5 assignees in each cluster. The proposed method has been empirically validated on 14,696 bug reports of Mozilla open source software project, namely, Seamonkey, Firefox and Bugzilla. In our approach, we observe that taking on these attributes (severity, priority, component and operating system) as antecedents, essential rules are more than redundant rules, whereas in [M. Sharma and V. B. Singh, Clustering-based association rule mining for bug assignee prediction, Int. J. Business Intell. Data Mining 11(2) (2017) 130–150.] essential rules are less than redundant rules in every cluster. The proposed method provides an improvement over the existing techniques for bug assignment problem.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3